
Bcfg2: A Pay As You Go Approach to

Configuration Complexity

Narayan Desai

December 5, 2005

Abstract

While configuration management tools are an area of substantial re-
search and development, tool adoption has lagged behind. We assert
that lack of adoption is caused in large part by complexity costs. We
will describe bcfg2, a configuration management tool, and its approach to
complexity mitigation.

1 Introduction

Configuration management is a topic that is intimately associated with sys-
tem management, security, and fundamentally, computer usage itself. As the
ubiquity of computers grows, the raw number of computers which need proper
configuration and software upgrades grows as well. System administrators have
great familiarity with the issues of configuration management; most environ-
ments have a regular cycle of software patching and reconfiguration that must
be performed.

While this task can be onerous, it is absolutely essential; without these
regular configuration changes, systems can easily become insecure or otherwise
non-functional. As tools can make this process faster and less error prone, the
deployment of configuration management tools can dramatically improve the
reliability and security of computer networks.

While it is generally acknowledged that configuration management tools can
greatly improve the process of system administration, widespread adoption has
not generally occurred. This is the most serious problem in configuration man-
agement. Bcfg2 is by no means alone as a comprehensive option; LCFG and
Quattor are both comparable. However, none of these tools has seen any serious
adoption outside of their development environment yet.

Our experiences deploying Bcfg2 have suggested that complexity is a major
aspect of the adoption puzzle. All of the systems mentioned above are quite
powerful, however, the price of this power is complexity. System complexity
causes a number of issues. These tools can be foreign or counter-intuitive to
users unfamiliar with them. Basic administration mechanisms change substan-
tially with each of these tools. We have found that bcfg2 users generally start

1



with simpler configuration representations. As their familiarity with the tool
increases, users grow more willing to accept more complex representations in
order to gain better functions from the tool.

Bcfg2 attempts to mitigate complexity issues through the use of generators.
Bcfg2 uses generators as configuration sources, each of which can have different
representations of configuration data. Several generators can be used in par-
allel, each contributing different aspects of the configuration, and each using a
different configuration representation. This feature allows Bcfg2 to provide a
”pay as you go” approach to configuration representation complexity. Users can
start with simple generators that use a very literal representation of configura-
tion data. As users grow more familiar with Bcfg2, and grow to trust it more,
they can shift their configuration data to more sophisticated representations
that allow more reuse and recomposition.

We will discuss several generators and the varieties of configuration repre-
sentations they use. In each case, we will describe the generator’s function and
benefits and disadvantages to the configuration format’s use. We will also at-
tempt to provide a sense of where each fits into the long term adoption process.

2 Related Work

Several configuration management tools comparable to Bcfg2 exist. LCFG[2]
and Quattor[6] are most similar to in functionality to Bcfg2. LCFG and Quat-
tor both use parameterized configurations as a basis for system configurations.
That is, both of these tools constructs a parameter list per client. Parameters
consists of keys and associated values. These parameter lists are interpreted by
software on clients, resulting in configuration changes. Quattor was designed
by a group with substantial LCFG experience, so it has a similar overall model.
The parameter store in Quattor consists of a database, where LCFG uses flat
files and a preprocessing scheme for client parameter construction.

CFEngine[4], while being the prevalent configuration management tool, is
vastly unlike Bcfg2. CFEngine is functionally a domain-specific programming
language, tailored to system administration. It is designed around an imperative
model; users write scripts that alter client configurations into the desired state.
On the other hand, Bcfg2, LCFG, and Quattor use a declarative model. The
user produces a specification for client configurations. The tool determines how
to best reconfigure clients in light of this specification.

Much work has been done in the area of configuration tool usability and
deployment studies. Rémy Evard performed a survey of system configuration
techniques in 1997 [10]. Paul Anderson has performed a more recent survey as
a part of the GridWeaver project [1]. These surveys have found large numbers
of tools used for system configuration, many of which are site-specific. This
finding highlights the adoption problem, as it demonstrates the lack of external
adoption of system configuration tools.

More recently, we have performed a case study in system configuration tool
deployment in a large group [9]. The deployment process, conducted over a

2



period of months, highlighted the difficulty inherent in the adoption of a system
configuration tool. Also, a cost analysis of system configuration and adminis-
tration has been conducted. This found a number of interesting issues focused
around the methods used in system configuration tool use.[7]

All of this work points at tool adoption as the most serious problem in system
configuration at this point. Fundamentally, tools will only help the community
at large if they can be easily used.

3 Tool Adoption

The adoption of a system configuration tool can be a costly and disruptive
process. This high cost is caused by several factors. System configuration tools
implement functionality that is intimately entangled with the daily activities
of system administrators. Due to this relationship, tool adoption (of any tool)
causes large changes to daily administration tasks.

A central task during this adoption process is the creation of a configuration
specification. Different tools use different mechanisms to represent this specifi-
cation. LCFG and Quattor use parameterized specifications. This mechanism
is quite powerful, however, initial setup is quite time consuming. Several other
systems, including Bcfg2, use more literal representations of configuration, in-
cluding copies of configuration files. Bcfg2 also uses other representations as
well.

We have completed several deployments of Bcfg2, among several different
groups of administrators. We have found the adoption process to be fraught with
other issues as well. Different administrators will have different considerations
in tool selection. This is largely due to differences in prior experience. As
each administrator discovers appropriate ways to use the new tool, they find
disparate, and, in some cases, conflicting mechanisms to achieve the same goals.
This issue is the most troubling problem caused by expressive, powerful tools.
Different mechanisms are developed for many reasons; administrators often have
different goals, tasks and experiences. Also, as administrators become more
proficient with a given tool, their usage (and comfort level with tool related
complexity) increases. These issues are described in much greater detail in
another paper[9]. Suffice it to say that this process can be quite intense and
costly.

4 Bcfg2

Bcfg2[8] was originally designed as a system configuration tool research vehicle.
Over the last three years, the basic design principles have proven themselves in
several environments. A major revision was completed in the last year, resulting
in a production-quality tool. Bcfg2 is now deployed in several environments, and
has been publicly released [3].

3



4.1 Architecture

Bcfg2 is designed as a client/server application. The client is responsible for
fetching a configuration description from the server, inventorying local client
state and committing appropriate configuration changes. The server is respon-
sible for marshalling the overall configuration specification into a client-specific
configuration description.

4.1.1 Client

The Bcfg2 client is run as a normal program on each client. The client config-
uration process consists of three steps. It connects to the server, and fetches
a series of probes. These probes are executed, and the results are uploaded to
the server. Probes detect local contributions to system configuration and can
be used to discover hardware inventories or any other locally canonical data.

After the probe interaction, the client fetches a literal configuration descrip-
tion from the server. This description consists of dependent and independent
clauses of configuration entries. Entries can have one of five basic types: Config-
File, Package, Service, Symlink, and Directory. Dependent clauses, or bundles,
contain a set of entries that have installation-time interdependencies. Bundles
generally correspond to services, their configuration files, and associated soft-
ware packages.

Once the client has downloaded the configuration description, it inventories
itself. It compares this with all configuration entries in the description. Any non-
conforming entries are flagged for correction. It then checks for configuration
entries that aren’t included in the description. This process is called two-way
verification. It provides fairly rigorous configuration verification.

Once the inventory step has completed, the client corrects any misconfigura-
tions. This process loops correcting errors until no more progress can be made.
It also provides automatic dependency handling. At the end of this stage, all
reconfiguration that can be made has been done. That is, with no changes, an
additional client execution will not result in any additional actions.

Upon update completion, the client produces a message containing a num-
ber of statistics including overall state, failing configuration entries, modified
configuration entries, and extra configuration entries. This message is sent to
the server where it can be used to create system summaries.

In our experience, client details only impact adoption insofar as client relia-
bility and result exposure are concerned. Most all complicated adoption issues
occur as a result of server-side design decisions.

4.1.2 Server

The Bcfg2 server is responsible for rendering the overall configuration specifica-
tion into a per-client configuration description, managing client settings (such
as base image, profile, and other metadata), and maintaining client statistics.
The system is designed around a central specification. Administrators describe
the intended goal configuration in this specification. Clients start in some state,

4



not necessarily identical to the goal state. As client nodes run Bcfg2, discrepan-
cies between clients and their desired configuration are individually corrected.
These changes and the goal states are tracked in the client statistics. Through
the use of both the specification and client statistics, three important pieces of
information can be derived: the desired state, non-conforming clients, and a list
of ways those clients are misconfigured. Using this information, administrators
can determine all client states using only server-side information at any time.

The role played by the server is obvious during all client configuration steps,
with the exception of the client configuration description creation process. This
process consists of the following steps. First, the server locates metadata for
the client requesting a configuration. This data is used to construct the ab-
stract configuration. The abstract configuration is a skeleton configuration that
contains an inventory of all configuration entries needed for the client configura-
tion, but without any literal contents. For example, “ConfigFile” entries in the
abstract configuration will have a filename but no file contents or permission
information associated this it. The abstract configuration contains all of the
entries that will appear in the complete, literal configuration. This step is used
to map out bundles and create structure in the abstract configuration.

Once the abstract configuration has been constructed, literal data must be
bound into each entry. The Bcfg2 server uses a set of generators for this task.
Generators are server side loadable modules. They are enabled upon server
startup, and register ability to provide literal configuration information about
particular configuration entries. For example, a generator may register the
ability to provide literal information for the configuration file “/etc/passwd”.
When the server needs to bind data into a configuration element, it locates the
generator that can service for that element, and calls it. The generator can then
execute arbitrary logic to determine the correct literal values for this entry on
the given client.

The use of generators in the Bcfg2 server creates a number of interesting fea-
tures. Most importantly, arbitrary representations can be used as specifications.
This makes Bcfg2 an ideal testbed for specification languages. Second, arbitrary
logic can be employed in the process of literal configuration construction. This
means that any scheme imaginable can be used to construct configuration from
a specification. Randomness and a variety of other programmatic techniques
can be employed in this process. More importantly, actions can be associated
with the configuration process.

A number of issues in the adoption process are centered around specification
language. In the case of Bcfg2, we have found it useful to have multiple ways to
specify similar configurations. This provides multiple models that can be used
for different administrators as appropriate.

In general, administrators’ trust in system configuration tools only grows
with experience. Initially, administrators neither trust or have a deep under-
standing of any new tool. Common sense suggests that simple configurations
will cause less problems than complex ones, so new users tend to create literal
and straightforward configuration specifications.

The model provided by Bcfg2 allows administrators to work with a spec-

5



ification language as literal or abstract as required by the problem and the
administrator’s familiarity and comfort level.

5 Generators and Specification Languages

Due to the use of several different generators in the same Bcfg2 deployment,
different languages with vastly different semantics are frequently used concur-
rently. We will describe several generators, and their associated specification
languages. This will provide some examples of how Bcfg2 can use literal and
symbolic specifications.

The use of client metadata is prevalent throughout all generators. The meta-
data for a client consists of its hostname, image, profile, set of classes, set of
bundles, and set of attributes. In general, specification fragments will apply to
some subset of clients based on one of these characteristics.

Each generator consists of a loadable module and a filesystem repository.
The repository contains generator specific configuration specification.

5.1 Cfg

Cfg is a generator that implements a literal configuration file repository. For
each configuration file served, a relative path in the filesystem repository is cre-
ated. For example, for a configuration file like /etc/X11/xorg.conf, a directory
corresponding to the path is created, in this case ./etc/X11/xorg.conf/. Lit-
eral copies of configuration files are placed in this directory. Each file in this
directory applies to some subset of clients, based on metadata. Applicability is
determined based on the filename. All filenames start with the basename of the
configuration file. If no suffix is specified, then the file applies globally, at the
lowest priority. More specific files will have a suffix that contains a metadata
type (like hostname, class, bundle, or image), the name of a group of that type,
and a priority used in case of ties.

This generator provides a very literal and predictable representation of con-
figuration. What you see is precisely what you get. This makes this generator
one of the default set of generators enabled in Bcfg2 installations.

5.2 SSHbase

SSHbase is a ssh key management system. It maintains a repository of ssh
public and private keys and constructs a comprehensive ssh known hosts file.
It functions entirely automatically; new keys are generated when one is requested
for an unknown host. At this point, the ssh known hosts file is updated for all
clients.

The repository language used by this generator consists of a directory con-
taining public and private keys for all clients. This system ensures two basic
properties. First, client keys persist beyond client rebuilds. Second, client keys
can be centrally revoked, in case of a system compromise.

6



The files in this directory are structured like host specific files in the Cfg
repository. Each file consists of the key file basename followed by “.H ” and the
client’s hostname.

5.3 TCheetah

TCheetah is a generator based on the Cheetah templating language[5]. Con-
figuration files are generated by instantiating a template populated with values
from an XML document. These XML documents are contained in the TChee-
tah repository and contain two basic types: a keyval type, and a list type. List
types can contain other list types or keyvals.

The TCheetah generator is quite powerful, particularly when compared with
the previous two generators described. At the same time, this generator is much
more complex, so its use typically occurs after administrators are comfortable
with Bcfg2 overall.

In our environment, we used Bcfg2 for nearly a year before starting to use
TCheetah. It is used to automatically build DHCP, DNS, and NIS files from
the same canonical host data. Our current system could easily be extended to
interface with LDAP systems as well.

This generator provides a powerful model that can be used to generate con-
figuration files in multiple formats based on the same canonical data. This
scheme is very similar to ones provided by LCFG and Quattor, and has proven
itself quite capable.

5.4 ServiceMgr

The service manager generator provides service activation and deactivation in-
formation for clients. Its specification consists of a single XML file that contains
metadata class based service information. This generator is a good example of
a group of several generators that use a metadata class scoped XML file for
configuration specification.

5.5 Other Generators

Several other generators exist and are in development. These provide several
other capabilities and specification representations. Of the more complex ones,
many could alternatively be implemented as a set of TCheetah templates. User
interface issues are generally the motivating factor for alternative powerful gen-
erators. We have found that our administrators like domain specific languages
in some cases. We have added a domain specific language for account and user
access information, and one for webserver virtual host layout. Generators are
easy to write, and can be added whenever it appears that another configuration
representation may be useful.

Similarly, generators have a variety of other uses as well. They are well
suited to tracking external data in local configuration files, as in the case of

7



tracking changes made globally to DNS. Generators are also useful for encoding
administrative processes.

6 Results

The ability to choose (or indeed create) representations for configuration speci-
fication based on the individual situation has yielded a great number of benefits
both during and after the adoption process. A number of tradeoffs are implicit
in this decision. Depending on the situation, and the administrator’s comfort
level with the tool, a simple solution may be the most desirable. As time goes
on, it may be desirable to migrate to a more complicated representation that
provides more functionality.

This feature is provides a substantial departure from other system configu-
ration tools. Bcfg2 provides the ability to migrate from a simple representation
to a more sophisticated one on a configuration file by file basis. Usually, tools
provide a single mechanism for specification. The ability to use many represen-
tations allows administrators to choose the deliberately take on cost where they
think it will be valuable.

During our deployments, we have found that this ability makes administra-
tors far more comfortable with the tool. In each case, administrators started
with a simple, literal representation of their configuration. As time goes on,
administrators are willing to assume more complexity in particular areas where
there configuration needs are complicated.

We have found that these areas differ radically from environment to environ-
ment. In our cluster environments, our hardware configuration is static; hence,
we are able to use a literal configuration with no problems. In our worksta-
tion environment, hardware is largely varied. This hardware also changes quite
frequently. For this reason, we have adopted a more complicated system that
automatically tracks client’s hardware inventory and generates a proper set of
configuration files for that hardware. This system is completely unnecessary for
a largely static system like our clusters, and takes more time to maintain and
tune. It is also harder to modify or explain to new administrators.

Conversely, user access to nodes in our clusters change frequently, so we
are willing to accept more complexity in the system that manages system au-
thentication data. Users are only granted access on nodes where their jobs are
currently running. On our workstation environment, user access changes only
when new users are added or old accounts are removed.

System administration is rife with these sorts of decisions. Being able to
decide when it is worthwhile to assume additional complexity leads to systems
that are as simple as is reasonable for a given environment.

8



7 Conclusion and Future Work

Tool complexity is a key issue preventing widespread deployment of system con-
figuration tools. While many capable tools exist, the costs of deployment are
too high for many environments to bear. Our approach of allowing represen-
tations of varying complexity has been demonstrated to improve the situation,
particularly during the adoption process.

This technique has also provided a good migration path for our administra-
tion after initial deployment. It provides a good mechanism for administrators
to tackle their complicated system configuration problems without incurring
overhead where none is needed.

That said, much work remains to be done. Tool adoption is still much too
difficult for successful widespread adoption. The adoption process could be
vastly improved. Automatic specification acquisition would go a long way in
helping administrators to try tools out. Better incremental adoption techniques
would allow slow migration of environments onto system configuration tools.

Motivation is another issue that must be tackled. It is imperative that better
system configuration techniques be adopted. However, short term compelling
reasons are needed to justify up-front adoption costs. Tools that can be adopted
incrementally will help with this issue; smaller scale initial deployments can be-
gin providing benefits for parts of the environment before a complete specifica-
tion is created. This also has the effect of lowering the cost of entry for these
tools.

Bcfg2 will continue to be a testing ground for ideas relating to system con-
figuration. We plan to add a facility for automatic change detection and inte-
gration. This will allow easy maintenance of already configured systems, and
will ease the reconfiguration process. We also plan to create a tool that will
create an initial configuration specification. This will help new users to try out
Bcfg2. At our site, we plan to deploy Bcfg2 in a number of new environments.
This will undoubtedly provide valuable information about adoption issues faced
by new users.

References

[1] Paul Anderson, George Beckett, Kostas Kavoussanakis, Guillaume Mech-
eneau, and Peter Toft. Technologies for large-scale configuration manage-
ment. http://www.gridweaver.org/WP1/report1.pdf, 2002.

[2] Paul Anderson and Alastair Scobie. Large scale Linux configuration with
LCFG. In USENIX, editor, Proceedings of the 4th Annual Linux Showcase
and Conference, Atlanta, October 10–14, 2000, Atlanta, Georgia, USA,
pages 363–372, Berkeley, CA, USA, 2000. USENIX.

[3] Bcfg2 web site. http://www.mcs.anl.gov/cobalt/bcfg2/.

9

http://www.gridweaver.org/WP1/report1.pdf
http://www.mcs.anl.gov/cobalt/bcfg2/


[4] Mark Burgess. A site configuration engine. In USENIX, editor, Computing
Systems, Summer, 1995., volume 8, pages 309–337, Berkeley, CA, USA,
Summer 1995. USENIX.

[5] Cheetah templating web site. http://www.cheetahtemplate.org/.

[6] Lionel Cons and Piotr Pozanski. Pan: A high-level configuration language.
In Proceedings of LISA 2002: 16th Systems Administration Conference,
pages 83–98. USENIX, 2002.

[7] Alva Couch. What is this thing called system configuration?
http://www.usenix.org/publications/library/proceedings/
lisa04/tech/talks/couch.pdf. Invited Talk LISA 2004.

[8] N. Desai, R. Bradshaw, R. Evard, and A. Lusk. Bcfg : a configuration
management tool for heterogeneous environments. In Proceedings of the
5th IEEE International Conference on Cluster Computing (CLUSTER03),
pages 500–503. IEEE Computer Society, 2003.

[9] Narayan Desai, Rick Bradshaw, Scott Matott, Sandra Bittner, Susan Cogh-
lan, Rémy Evard, Cory Luenighoener, Ti Leggett, J.P. Navarro, Gene
Rackow, Craig Stacey, and Tisha Stacey. A case study in configura-
tion management tool deployment. In Usenix, editor, Proceedings of the
Nineteenth System Administration Conference (LISA XIX), December 4–
9, 2005, San Diego, CA, USA, pages 39–46, 2005.

[10] Rémy Evard. An analysis of UNIX system configuration. In USENIX, edi-
tor, Proceedings of the Eleventh Systems Administration Conference (LISA
XI), October 26–31, 1997, San Diego, CA, USA, pages ??–??, Berkeley,
CA, USA, 1997. USENIX.

10

http://www.cheetahtemplate.org/
http://www.usenix.org/publications/library/proceedings/lisa04/tech/talks/couch.pdf
http://www.usenix.org/publications/library/proceedings/lisa04/tech/talks/couch.pdf

	Introduction
	Related Work
	Tool Adoption
	Bcfg2
	Architecture
	Client
	Server


	Generators and Specification Languages
	Cfg
	SSHbase
	TCheetah
	ServiceMgr
	Other Generators

	Results
	Conclusion and Future Work

